ABSTRACT

In order for a sustainable product to be successful in the market, designers must create products that are not only sustainable in reality, but are also sustainable as perceived by the customer—and reality vs. perception of sustainability can be quite different. This paper details a design method to identify perceived sustainable features (PerSFs) by collecting online reviews, manually annotating them using crowd-sourced work, and processing the annotated review fragments with a Natural Language machine learning algorithm. We analyze all three pillars of sustainability—social, environmental, and economic—for positive and negative perceptions of product features of a French press coffee carafe. For social aspects, the results show that positive PerSFs are associated with intangible features, such as giving the product as a gift, while negative PerSFs are associated with tangible features perceived as unsafe, like sharp corners. For environmental aspects, positive PerSFs are associated with reliable materials like metal while negative PerSFs are associated with the use of plastic. For economic aspects, PerSFs mainly serve as a price constraint for designers to satisfy other customer perceptions. We also show that some crucial sustainability concerns related to environmental aspects, like energy and water consumption, did not have a significant impact on customer sentiment, thus demonstrating the anticipated gap in sustainability perceptions and the realities of sustainable design, as noted in previous literature. From these results, online reviews can enable designers to extract PerSFs for further design study and to create products that resonate with customers’ sustainable values.

1 INTRODUCTION

Designing sustainable products that are successful in the market poses a continued challenge for designers. Despite 66% of global consumers saying they are willing to pay more for sustainable products [1], it is difficult to advertise and sell to this desire as sustainable features are often hidden and unnoticed, such as energy usage or manufacturing methods [2]. Customers are also skeptical of eco-labels due to misleading marketing strategies, or “greenwashing” [3]. Designers can communicate sustainability through subtle cues in the product features. For example, a previous study by She and MacDonald demonstrated that customers think about sustainability-related decision criteria as well as prioritize hidden sustainability features when exposed to visible product features termed “sustainability triggers” [2]. These findings were based on simulated real-world decision scenarios using realistic prototypes of toasters. The growth of online shopping introduces a new challenge for communicating sustainability. Over the past two decades, more customers are moving towards online outlets with e-commerce sales making up 9.6% of total retail sales as of 2018, up from 4.2% in 2010 [4]. Roghanizad and Neufeld show that online customers tend to rely more on intuition than rational judgement when making purchasing decisions due to higher risk of buying a product before seeing it [5]. The authors use an online book store shopping simulation with website, decision, and risk manipulation to investigate changes in shopping behavior. Identifying customer perceptions of sustainable features (PerSFs) can therefore help designers increase the appeal of sustainable products for online shoppers.

Traditional approaches of understanding customer perceptions include surveys, interviews, and focus groups. These approaches use stated preference in which customers report their preference or feedback in response to a prompt given by the designer. Stated preference for sustainability is prone to Social Desirability Bias: the propensity for people to do or say the socially-acceptable thing in hypothetical situations. For
example, out of 60 participants that stated they are not willing to buy non-recycled paper towels in a survey, 52 of them reported buying a towel brand with 0% recycled paper the last time they went shopping [6]. This is a large problem for sustainable product assessment. Moreover, stated preference methods are time-intensive, prone to other biases like priming, and may not capture all customer needs.

An alternative source for understanding customer perceptions is through online reviews; these have become feasible for designers to tap into with advancements in natural language processing (NLP). An example of two product reviews is shown in Fig. 1; each review provides different PerSFs of the product. For example, features like the environment-friendly packaging and charity donations have positive sentiment (i.e. drive customer satisfaction) while the functionality of the filter has negative sentiment (i.e. drives customer dissatisfaction). The reviews can serve as a roadmap for designers on how to communicate sustainability from a product’s features while also driving customer satisfaction.

This study uses online reviews to identify PerSFs and to determine which of these features have positive and negative sentiment. Machine learning techniques are used to process large amounts of information. The goal is to help designers bridge the gap in perceptions and create products that satisfy both crucial sustainability design concerns and sustainability concerns as interpreted by the customer, which may in reality be superficial concerns. The rest of the paper is organized as follows: Section 2 presents a brief background on the use of online reviews in design, section 3 presents a literature review on NLP research, section 4 describes the method used to build a machine learning model, section 5 and 6 show the results and analysis, findings are discussed in section 7, and conclusions are made in section 8.

2 BACKGROUND

In this section we present a brief background on the use of online reviews in design and the associated challenges for designers. A growing body of works is implementing techniques from NLP to address these challenges and is presented in section 3.

2.1 Online Reviews as a Resource for Designers

Online reviews are one of the largest and most accessible collections of crowdsourced customer perceptions. Ren et al. show that crowdsourcing can be used to capture perceptions of design features [7]. They recruited respondents from Amazon Mechanical Turk (MTurk) to assess perceived safety of car designs and used machine learning to capture important design features. The findings suggest that designers can use online reviews to understand perceptions that enable them to communicate cues to customers from product features.

Online reviews have been considered as both stated and revealed preferences, where revealed preferences rely on past-purchase information and not hypothetical. For example, Engström and Forsell consider online reviews as stated preference because they differentiate online reviewers from users who bought a product [8]. Netzer et al. consider online reviews as revealed preference that can be used as auxiliary input to stated preference data [9]. In reality online reviews have traits of both preferences as customers are not responding to a prompt but are still open to reframe their actions and choices in a more positive light (for a full discussion on the pitfalls of online reviews please refer to section 2.2).

Overall, it is likely that customers’ assessments of sustainable features are more genuine than those in surveys and other traditional stated-preference approaches. For example, customer perceptions extracted from online reviews compare favorably with using elicitation-based methods like surveys. Decker and Trusov demonstrate this using reviews for mobile phones [10]. Online reviews are also a source of product innovation for designers. Qiao et al. examined frequency of App updates in the Google Play Store relative to the types of reviews written by users. They found that mildly negative and long and easy to read reviews increase the likelihood of an App update [11]. Reviews therefore provide more than just a word-of-mouth effect and provide valuable information for designers.

2.2 Challenges of Online Product Reviews for Designers

The availability of customer perceptions in online reviews presents both an opportunity and a challenge. While it offers a wealth of information for designers, it is difficult to synthesize useful information from it. Online reviews are unstructured, mostly written in free form, and the large quantities make them challenging to be processed by humans. The context that the reviews are written in is also unknown to the designer which can be problematic. For example, customers may have received a
product for free in return for a review. It is also not possible to know if all customers paid the same price due to the fluctuating prices on websites such as Amazon, limiting the value of comments that mention words such as "affordable". In response to this challenge, industry experts have developed tools that measure the authenticity of reviews based on author history and other factors (refer to section 4.1 for more information).

Furthermore, customers perceive helpfulness of reviews differently from product designers. Liu et al. study the correlation between the customer helpfulness vote count of reviews from Amazon with review annotations on helpfulness to a designer [12]. The authors find a weak correlation between the two with a 35.3% mean average error (MAE) and 29.5% root mean square error (RMSE). This suggests that there is a gap in perceptions for helpfulness of a review between customers and designers. The paper finds that longer reviews that discuss many product features are most helpful to a designer.

3 DEVELOPMENTS IN NLP RESEARCH

Research related to online reviews dates back to the 2000s in marketing research. Later works focused on extracting customer preferences from reviews using NLP techniques. These preferences might be explicit, where their meaning is not open to interpretation, or they may be implicit, where we would need to read between the lines to interpret them. The terms text mining, opinion mining, and sentiment analysis are often used interchangeably to refer to a group of NLP techniques. This section reviews NLP research within the field of design.

3.1 Extracting Explicit Customer Perceptions from Online Reviews

This section focuses on works that extract explicit customer perceptions from reviews. Rai was one of the first to identify customer preferences from online reviews with the goal of aiding designers [13]. He extracted key product features from reviews for a camcorder from epinions.com using a term-document matrix (TDM) and part-of-speech (POS) tagger. Stop-words were removed from the reviews and words were stemmed. A weighted metric took into account the rate of occurrences of product features in the reviews to measure the importance of a feature. When compared to information from the website, importance levels were accurate up to the sixth ranked attribute.

Stone and Choi used Twitter as a source of customer preferences [14]. The authors used a 3-class Support Vector Machine (SVM) model for sentiment classification on 7000 Twitter messages related to smartphones, and a preference model to compare results of the SVM model with data from BestBuy (where product features are already categorized into pros and cons). Tweets were featureized using a bag-of-words model. Note that “featureizing” in this case refers to an NLP process for identifying measurable properties in text and is not related to features of a product. The results confirmed that customers share their opinions of products through Twitter and that designers can use this source to potentially inform design decisions.

Singh and Tucker used sentiment analysis to determine “must have” and “deal breaker” features for products [15]. “Must have” features are those that are popular while “deal breaker” features are those that are unpopular. Tweets related to the iPhone 5 were collected to test the method. Among the “must have” features were “light weight” and “WiFi” while the “deal breakers” included “battery”, “screen”, “speaker” among others. By identifying these features, designers can determine what to focus on in the next iteration of a product.

Singh and Tucker follow up on this work by investigating different machine learning models to classify reviews based on the content of the review using precision, recall, and F-scores to evaluate the model [16]. The authors manually annotated reviews to one of the following categories: function, form, behavior, service, and other content. Latent Dirichlet Allocation (LDA) was used for topic modeling to provide a benchmark for the annotators and to ensure that reviews annotated in “other” don’t belong in the other categories. LDA is a topic modeling approach which is commonly used for identifying topics in large amounts of text [17–21]. The results showed that most one-star reviews were related to service, and that a product’s star rating had the highest Pearson correlation with reviews related to form. By classifying reviews based on content, designers can identify which aspect of the product (function, form, behavior) needs improvement. Moreover, if a review is related to service then it is more of a concern for the seller than the designer.

Tuarob and Tucker use social media networks to identify lead users [22]. Lead users are a group of product users that face needs ahead of the general market or population and can be a source of product innovation for designers. The authors compare product features that are discussed in social media networks with features from product specifications to identify which features do not currently exist in the market. The proposed method was tested using an iPhone case study and found the following top five latent features: waterproof, solar panel, hybrid, tooth pick, and iHome. Using this method, designers can more efficiently identify lead users to help innovate new products.

3.2 Extracting Implicit Customer Perceptions from Online Reviews

Implicit perceptions are phrases like, “I have to squint to read this on the screen,” where explicitly this might be “the screen is too small”. Tuarob and Tucker implemented a co-word network in the context of product design to capture implicit data in reviews [23]. To develop the co-occurrence network the authors first extracted explicit product features using a POS tagger. Sentiment extraction was performed using SentiStrength [24]. A co-word network was then generated where the nodes are ranked in order to translate the implicit message into an explicit form. The authors used Twitter data, comprising of 390,000 Twitter messages about 27 smartphone products, to test the method. With this method designers can capture more of the available perceptions in online reviews.

Wang et al. proposed a Kansei text mining approach to capture customers’ affective preferences in products from reviews [25]. Kansei engineering is a product development process that quantifies relationships between affective responses and design features [26]. Wang et al. first collected generic Kansei words using WordNet to expand on words from literature and then extracted product features using a POS tagger to identify common nouns and noun phrases. They filtered sentences from reviews so that only identified product features and Kansei words were included. The sentences were summarized based on word frequency to determine customer
affective preferences. The authors used product reviews from Amazon to test this method.

The literature has yet to explore methods to identify complex topics in reviews like sustainability. Moreover, limited work exists on determining PerSFs from online reviews. This research aims to model PerSFs using machine learning techniques to determine which of these features are associated with positive and negative sentiment.

4 METHOD

The method described in this study combines research from rating design ideas, identifying customer perceptions, and natural language processing (Fig. 2). There are several studies existing at the intersection between identifying customer perceptions and rating design ideas. Natural language processing is also a mature area of research. The innovative contribution of this paper is at the intersection of these three research areas.

In this study we focus on the application of sustainable product features which we categorized into three aspects: social, environmental, and economic. The research proposition of this work is that product reviews related to these sustainability aspects contain semantic and syntactic characteristics that can be modeled. Sections 4.1 and 4.2 cover the method associated with the green and yellow regions of Fig. 2 while sections 4.3 and 4.4 explain the blue region of Fig. 2. A simplified chronological representation of the steps we took is shown in Fig. 3.

We used supervised learning techniques based on logistic classification to model the reviews. Each of the steps in Fig. 3 are explained below.

4.1 Collect Product Reviews from Amazon

We scraped a total of 1474 product reviews from Amazon for four French Press coffee makers. The intention was to select products that are ubiquitous and likely to have reviews that contain PerSFs. We used an online data analytics tool (fakespot.com) to estimate authenticity of reviews for a product and selected only products having an estimated 80% authentic reviews or higher. Very few products were rated as having 90% or more authentic reviews. The tool analyzes reviewer history patterns such as writing style, date correlation, frequency, and other factors to estimate authenticity. While up to 20% of the scraped reviews may have been fake, the number that contain sustainability aspects will be small due to fake reviews containing generic content. Therefore, any fake reviews are likely to be weeded out during the annotation process (see section 4.2). If any fake reviews are annotated, they are likely to be small in numbers and have a negligible effect on the models. We selected products that had similar features and were around the same price point as each other.

4.2 Annotating Reviews via Crowdsourcing

We recruited respondents from MTurk to annotate the collected product reviews via a Qualtrics survey, we refer to these respondents as “annotators” in this study (see section 4.2.3 for more information on annotators). The survey included training sessions, short quizzes, annotating reviews, checkpoints, and demographics questions at the end. The annotations generated from the survey are used as data input to a machine learning model that identifies PerSFs from reviews (see section 4.3.2).

4.2.1 Survey Design

The survey consists of three versions in order to be customized for each sustainability aspect (social, environmental, economic. We distributed a total of 900 annotators evenly across each version, see Fig.4).

In each version, annotators focus on one sustainability aspect to simplify the task as much as possible. We chose this approach after a pilot study showed that combining all three aspects in one survey confused the annotators. Each version has a customized training and testing portion. In the training portion, annotators are shown topics to look for in reviews (see Table 1)
along with examples of annotated reviews\(^1\). In the testing portion, annotators choose phrases that are relevant to a sustainability aspect from example reviews. Annotators have to pass this test to proceed and are given three attempts. Between the three versions, examples and test questions provided are based on similar topics to reduce potential biases.

Table 1: Topics to look for in reviews for each sustainability aspect

<table>
<thead>
<tr>
<th>Social Aspects</th>
<th>Environmental Aspects</th>
<th>Economic Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health and safety</td>
<td>Material use</td>
<td>Product price</td>
</tr>
<tr>
<td>Family and culture</td>
<td>Energy and water consumption</td>
<td>Cost saving</td>
</tr>
<tr>
<td>Education</td>
<td>Product durability</td>
<td>Marketing</td>
</tr>
<tr>
<td>Community support</td>
<td>Air and water emissions</td>
<td>Profit and business growth</td>
</tr>
<tr>
<td>Human rights</td>
<td>Waste and recycling</td>
<td>Job creation</td>
</tr>
</tbody>
</table>

After passing the test, annotators are presented with 15 reviews and are asked to complete the steps shown in Fig. 5.

![Figure 5: General Annotation Process](image)

Reviews are pulled from a server using weighted random sampling (see section 4.2.2) and displayed in the Qualtrics question. For each review, the associated product type and rating are shown. Annotators then use their best judgment to highlight phrases they perceive are “Relevant” to a sustainability aspect. Up to five relevant phrases can be highlighted per review. Figure 6 shows a highlighting example for an environmental aspect.

![Figure 6: Example of highlighting a phrase](image)

After highlighting a relevant phrase, annotators are asked to type in a product feature that is mentioned in the phrase and rate the positive and negative emotional strengths associated with the phrase (see Fig. 7).

If a phrase did not mention a specific product feature, annotators are asked to type “general”. The emotional strengths are rated on a 5-point Likert scale. The Likert questions and terminology for emotions are taken from a previous study for sentiment analysis [24]. We ran two pilot studies where we explained the terminology in one study and did not explain it in the other. We found that not giving an explanation was less confusing to the annotators and provided more usable responses. The overall emotional strength in a review phrase is then calculated as follows:

\[
\text{Emotional strength} = \text{Positive strength} - \text{Negative strength} \quad (1)
\]

If a review does not contain any relevant phrases, annotators are asked to highlight the entire review and label it as “Not relevant”. Annotators also have the option to select “Unsure” if they wish to opt out (Fig. 6). If either of these options are selected, annotators skip the questions in Fig. 7 and are presented with the next review. Note that only phrases highlighted as “Relevant” are used in the machine learning model. An initial study showed that having a single annotation for a full review resulted in generic outputs from the machine learning model. Despite the annotator training sessions in the surveys, the subjective nature of sustainability means it is unlikely to have consistent behavior among all annotators. We mitigate this by having three annotators for each review, therefore increasing the probability of an annotator catching a relevant phrase that was missed by another annotator. Moreover, if multiple annotators are highlighting the same phrase then we can assume more confidence in the accuracy of the annotation.

4.2.2 Server Implementation

To control which reviews are annotated by whom, we hosted reviews on a server that Qualtrics requests reviews from via a JavaScript-built custom feature. The server uses a weighted random sampling method to select a review that it sends back to Qualtrics. The sampling method takes into account how many

\[^{1}\text{http://erinmacd.stanford.edu/?attachment_id=334}\]
times a review has been previously selected and prioritizes reviews that have fewer annotations. Eq. 2 provides a mathematical representation of this:

\[S(r) = \left(1 - \frac{\text{counter}(r)}{3}\right) \times \text{random()} \]

(2)

where \(r \) represents a review, \(\text{counter}(r) \) is the number of times a review has been selected, \(\text{random()} \) generates a random number between 0 and 1, and \(S(r) \) is the probability that a review is selected. If a review has not been selected before, it has a uniform probability of being selected, otherwise it is less likely to be selected until all other reviews have been selected the same number of times.

4.2.3 Annotators

A total of 900 annotators participated in the study (300 annotators per version of the survey) and each annotator spent an average time of 20 minutes to complete the survey for a compensation of $4. We used online instead of in-person annotators to efficiently annotate a large number of reviews within reasonable time constraints. Moreover, we recruited respondents from MTurk instead of expert judges so that the demographics of the annotators match the demographics of online users in terms of age and education levels [27]. This is important such that the PerSFs identified by annotators can match as close as possible to those of the online reviewers.

To increase data reliability, we limited annotators to respondents in the United States that were on a desktop/laptop and had a minimum 97% approval rate. High approval rates are correlated most strongly with data quality [27]. Respondents based in the US also provide the highest response quality on average [28]. Moreover, after pilot testing we found that the survey formatting on mobile devices was cumbersome and affected response quality, so we placed a laptop restriction. The surveys were launched on weekday mornings Pacific Standard Time to align with better responses from respondents during regular working hours [28]. The surveys were launched using Human Intelligence Tasks (HITs) on the MTurk platform.

We approved 871 responses out of the 900 total annotators. We used two criteria to approve responses: 1) time to completing the survey (\(t \)) is within 1 standard deviation (\(\sigma \)) of mean completion time (\(\mu \)) or longer (i.e. \(t \geq \mu - \sigma \)) and 2) passing a checkpoint question. For participants that did not meet the first criteria, we approved their response contingent on them answering the checkpoint question correctly. By relying on the checkpoint question as a final decider, we limit the chances of unfairly rejecting responses. For example, certain annotators may have received shorter reviews on average resulting in a shorter completion time.

4.3 Model Reviews and Annotations using NLP

We used logistic classification to analyze the acquired data and identify PerSFs. The model predicts if a given phrase has a positive or negative sentiment using (1) phrases that are highlighted as relevant (i.e. contain sustainability aspects) and (2) the typed-in product features by annotators. We first featurize the annotations and then build a logistic classifier model. Note that the term “featurize” here refers to an NLP process and is not related to product features. The steps involved are outlined below.

4.3.1 Featurize Annotations

We featurized the annotated review phrases, called "annotations" and associated words to identify measurable properties that can be stored in a matrix for input to a classifier model. The following data was featurized: the highlighted phrases, the typed-in product features, and the emotional strength scores.

We featurized the highlighted phrases using a standard bag-of-words (BOW) model as well as bigrams and trigrams [29]. Note that only phrases that were highlighted as “Relevant” (i.e. contained sustainable aspects) are used in the model. Text that was highlighted as “Not Relevant” or “unsure” was not used. In a BOW model, the rows consist of all the phrases while the columns consist of the vocabulary for the entire collection of phrases. The matrix then tabulates the number of times a certain word occurs in a given phrase. Table 2 shows an example. Bigrams and trigrams are modeled similarly except that we count the occurrences of two and three consecutive words respectively instead of the occurrences of individual words.

<table>
<thead>
<tr>
<th>Table 2: Simple BOW Model Example</th>
<th>Bamboo</th>
<th>Handle</th>
<th>Stainless</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bamboo</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>handle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>handle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The product features typed in by the annotators were featurized using LDA to identify a set of overarching product features. In this case, the topics are the product features and the documents are the compiled texts typed in by the annotators. The number of topics is pre-defined and tuned for optimal results. The LDA model is presented mathematically in Eq. 4:

\[P(t_i|d) = \sum_{j=1}^{\|Z\|} P(t_i|z_i = j) \times P(z_i = j|d) \]

(4)

where \(t_i \) represents a term from the total terms \(T \) and \(d \) represents a document from a collection of documents \(D \). \(z_i \) is a topic to be identified and \(\|Z\| \) is the total number of topics which is predefined. \(P(t_i|z_i = j) \) is the probability of finding term \(t_i \) in topic \(j \) and \(P(z_i = j|d) \) is the probability of finding a term from topic \(j \) in document \(d \). The LDA model is used to maximize the probability \(P(z|d) \) which is the probability of a topic given the document. We hot-encoded the identified product features so that they are machine readable. For example, if we identified “lid”, “handle”, and “glass” using LDA, we would input them to model as \([1,0,0]\), \([0,1,0]\), and \([0,0,1]\) respectively for each phrase.

While the highlighted phrases and the typed in product features are inputs to the model, the emotional strength scores are outputs to the model. We used a two-class model which means that the output has to be binary. In this case, the binary
options are positive sentiment and negative sentiment. We initially ran a multi-class model but due to having less labeled data per class, the explanation power was too limited to draw conclusions. We therefore proceeded with a two-class model. A two-class model also allowed us to interpret the generated parameters and identify positive and negative PerSFs (see section 4.4). Implementing a multi-class model would have reduced the model performance without a clear benefit in terms of understanding what PerSFs drive customer satisfaction or dissatisfaction. We treated emotional strength scores above 0 as positive sentiment and scores at 0 or below as negative sentiment.

4.3.2 Build a Logistic Classifier

We implemented logistic classification in this study to predict if a phrase with sustainable aspects had positive or negative sentiment. We built three separate models to account for each sustainability aspect (social, environmental, and economic). The logistic function produces an S-shaped curve bounded between 0 and 1 such that the output is always meaningful for our purpose; negative sentiment has a value of 0 while positive sentiment has a value of 1. This model has proven to be a simple yet highly effective model in natural language understanding. The model for logistic classification is shown in Eq. 5:

\[p(Y = 1|X) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} \] \hspace{1cm} (5)

where \(X \) is a matrix with rows consisting of the phrases and columns consisting of the following information for each phrase:
- BOW model, bigrams, and trigrams
- Product Feature from LDA

The term \(p(Y = 1|X) \) is the probability that a given phrase belongs to class \(Y = 1 \) (i.e. that the phrase has positive sentiment) [30]. The \(\beta \)'s are fitting parameters that are optimized using a maximum likelihood function (Eq. 6).

\[L(\beta_0, \beta_1) = \prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i))^{1-y_i} \] \hspace{1cm} (6)

where \(p(x_i) \) is the probability that review \(x_i \) belongs to class \(y_i \). The intuition behind the maximum likelihood function is that betas are selected such that plugging them into Eq. 5 yields a number close to 1 for reviews that have positive sentiment and a number close to 0 for reviews that have negative sentiment.

We implemented logistic classification in Python using the Scikit package. The matrix generated from featurizing annotations consisted of several thousand columns that the logistic model used as information to predict customer sentiment. To avoid overfitting, the model uses penalty terms to shrink fitting parameters based on Ridge regularization. We used hyperparameter optimization with five-fold cross validation to optimize penalty terms.

4.4 Identify Features Perceived as Sustainable by Customers

After building and evaluating the logistic classification model, we examined beta parameters and p-values to identify the variables that have the largest influence on the model. The two-class model in this case lends itself for interpretability. For example, a positive parameter would indicate that a variable has a positive emotional score while a negative parameter would indicate that a variable has a negative emotional score. This interpretation would have been less clear with a multi-class model. Similarly, variables with a p-value of 0.05 or less were identified as statistically significant for having a relationship with the dependent variable (sentiment). As described in section 4.3.1, the explanation power from a multi-class model was too limited to draw conclusions due to the data structure.

P-values were measured using the Chi-squared test to measure dependence between variables. Note that we did not apply Bonferroni corrections as we used Ridge regularization with penalty parameters to address the high-dimensionality issue in the models. Through these indicators we can determine which PerSFs have positive or negative sentiment.

5 Pre-Processing and Model Evaluation

Before featurizing the annotations, we first pre-processed the text data collected. This includes the phrases highlighted as relevant and the product features typed in by the annotators. Pre-processing text is done to minimize the amount of noise in the data by removing information that is unlikely to add value. The following pre-processing steps were taken: lowercasing, removing punctuation, removing stop-words (words like “to”, “from”, “but”, “as”, etc.), and stemming (breaking down words to their root version).

We split 70% of the featurized annotations into a training set and the remaining 30% into a test set. The training data is used to train the model while the testing data is used to evaluate the predictive abilities of the model. By having two sets of data, we reduce the chances of overfitting as the model is evaluated on new data. We used five-fold cross validation on the training set. To measure how effective the model is, we used three metrics commonly used in NLP: precision, recall (also known as specificity), and F1 score. These are shown in Eqs. 7, 8, and 9, respectively.

\[\text{Precision} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}} \] \hspace{1cm} (7)

\[\text{Recall} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}} \] \hspace{1cm} (8)

\[F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \] \hspace{1cm} (9)

Precision and recall provide different perspectives about how well the model performs while F1 is a harmonic average of the two. Precision indicates how many of the predictions made by the model were correct while recall indicates how well the model was able to predict available information. For example, if there are 5 reviews with positive sentiment and the model
predicts that only 2 of them are positive, it would have a 100% precision score while the recall would only be 40%.

The precision, recall, and F1 scores are shown in Tables 3-5 for social, environmental, and economic aspects, respectively. These scores evaluate how well the model predicts positive and negative sentiment in phrases that contain sustainability aspects.

<table>
<thead>
<tr>
<th>Table 3: Precision, Recall, and F1 Scores for Social Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Positive Sentiment</td>
</tr>
<tr>
<td>Negative Sentiment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4: Precision, Recall, and F1 Scores for Environmental Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Positive Sentiment</td>
</tr>
<tr>
<td>Negative Sentiment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5: Precision, Recall, and F1 Scores for Economic Aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Positive Sentiment</td>
</tr>
<tr>
<td>Negative Sentiment</td>
</tr>
</tbody>
</table>

The F1 scores for predicting positive sentiment are consistently high (between 0.85 to 0.90) while they are lower for predicting negative sentiment (between 0.53-0.69). This is likely because there were more annotated phrases related to sustainability that have positive sentiment compared to negative across the three sustainability aspects. Nonetheless, the scores suggest that we can have confidence in the value derived from the model and that designers can extract meaningful PerSFs from them, thus supporting our research proposition. The following section presents the PerSFs extracted in this study.

6 ANALYSIS AND RESULTS

This section is split into two parts: in the first we analyze the annotation patterns in the survey, and in the second we report the outputs from the logistic classification models.

6.1 Analysis of Annotations

Figure 8 shows the distribution of the number of relevant reviews annotated by annotators for each survey version. All three versions follow a similar skewed normal trend, averaging at about 6 relevant reviews per annotator followed by a spike at 15 reviews. The distributions are skewed towards 0 because overall there are less reviews that are relevant to sustainability aspects than reviews that are not relevant. The spike at 15 relevant reviews suggests that a subset of annotators was annotating more than needed, because this indicates that 15-20 annotators marked each review they saw as relevant, which is unlikely to be the case.

Figures 9-11 show distributions of the number of relevant phrases highlighted by annotators for social, environmental, and economic aspects respectively. These show more granular information than looking at the reviews overall. Most annotators highlighted between 0 and 20 relevant phrases with a handful of outliers in each survey. We manually checked the outliers and found that these annotators were still following guidelines for what is relevant to sustainability but chose to highlight shorter phrases with more frequency. The distributions in Figs. 8-11 do not follow a perfect normal curve which suggests that there is variability in the behavior of the annotators, as expected. This confirms the need for having multiple annotators per review to identify relevant aspects of sustainability in reviews.

![Figure 8: Number of Relevant Reviews per Annotator](image)

![Figure 9: Number of Highlights per Annotator for Social Aspects](image)

![Figure 10: Number of Highlights per Annotator for Environmental Aspects](image)
Figure 11: Number of Highlights per Annotator for Economic Aspects

6.2 Analysis of Classification Models

This section presents the product features obtained using topic modeling followed by the results from the logistic classification models.

6.2.1 Topic Modeling Output

Table 6 shows the extracted product features using the topic modeling approach outlined in section 4.3.1. The features are in order of highest occurrence in the annotated phrases. Note that we manually categorized the product features shown in Table 6 based on the cluster of words generated from the LDA model. For example, the cluster of words generated for topic 10 in the Economic model included “great”, “so good”, “love it”. We categorized these as “liking the product”.

Table 6: Product features generated from topic modeling

<table>
<thead>
<tr>
<th>Social</th>
<th>Environmental</th>
<th>Economic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>General</td>
</tr>
<tr>
<td>2</td>
<td>French Press</td>
<td>French Press</td>
</tr>
<tr>
<td>3</td>
<td>Health and safety</td>
<td>Product durability</td>
</tr>
<tr>
<td>4</td>
<td>Liking the product</td>
<td>Plastic use</td>
</tr>
<tr>
<td>5</td>
<td>Glass carafe</td>
<td>Energy and water consumption</td>
</tr>
<tr>
<td>6</td>
<td>Easy use</td>
<td>Material use</td>
</tr>
<tr>
<td>7</td>
<td>Family and culture</td>
<td>Glass</td>
</tr>
<tr>
<td>8</td>
<td>Coffee</td>
<td>Quality</td>
</tr>
<tr>
<td>9</td>
<td>Plunger</td>
<td>Water waste</td>
</tr>
<tr>
<td>10</td>
<td>Filter</td>
<td>Metal</td>
</tr>
<tr>
<td>11</td>
<td>Size</td>
<td>Filter</td>
</tr>
<tr>
<td>12</td>
<td>Handle</td>
<td>Lid</td>
</tr>
<tr>
<td>13</td>
<td>Screen</td>
<td>Plunger</td>
</tr>
<tr>
<td>14</td>
<td>Lid</td>
<td>Size</td>
</tr>
<tr>
<td>15</td>
<td>Metal</td>
<td>-</td>
</tr>
</tbody>
</table>

The product features generated from the LDA model include a combination of general concepts presented from the training (such as “health and safety”, see Table 1) and specific product features generated by the annotators (such as “glass carafe”). Product features for social aspects revolve around safety, convenience, and generally liking the product. For environmental aspects the product features revolve around durability, material use, and energy and water consumption. Features for economic aspects revolve around price, quality, durability, and advertising. From Table 6 we can see that features tend to become more product-specific further down the list for social and environmental aspects. For the economic aspects, most of the product features are not product-specific. The product features from the LDA model provide an initial indication for a designer on where they should focus their efforts for a given sustainability aspect.

6.2.2 Logistic Classification Output

The largest and smallest logistic classification parameters from each of the sustainability aspect models are shown in Figs. 12-14. The larger (positive) parameters correspond to features that the model predicts have positive sentiment while the smaller (negative) parameters correspond to features that the model predicts have negative sentiment. Note that the features displayed in the figures have been stemmed as part of pre-processing the highlighted phrases such as “bought thi” in Fig. 12, which may originally have been “bought this” or “bought these” (see section 5 on stemming). Moreover, note that synonyms are present in the results (for example, “great valu” and “worth money” in Fig. 14). These synonyms may have been reduced by implementing vector representation of words to determine word similarities, however we avoided this to retain interpretability of the outputs of the model (i.e. to keep the outputs of the model as words instead of vectors).

Table 7 shows the features that are statistically significant at p=0.05 to customer sentiment for each sustainability aspect. For the most part these words can also be found from the parameters in Figs. 12-14, or are otherwise related, therefore indicating reliability in the results. For example, “after month” in the environmental column is related to the durability of the product over time. It is interesting to note that environmental aspects had the greatest number of significant words, suggesting that customers have more consistent perceptions of product features related to environmental aspects than social aspects.

Table 7: Statistically Significant Words

<table>
<thead>
<tr>
<th>Social</th>
<th>Environmental</th>
<th>Economic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to</td>
<td>Easy to</td>
<td>Was advertised</td>
</tr>
<tr>
<td>Easy to clean</td>
<td>Well made</td>
<td>Feel cheaper</td>
</tr>
<tr>
<td>Glass broke</td>
<td>Easy to clean</td>
<td>Waste money</td>
</tr>
<tr>
<td>To clean</td>
<td>The glass</td>
<td>Glass crack</td>
</tr>
<tr>
<td>Glass crack</td>
<td>After month</td>
<td>Glass break</td>
</tr>
<tr>
<td>After month</td>
<td>Glass broke</td>
<td>Press broke</td>
</tr>
<tr>
<td>For my</td>
<td>To clean</td>
<td>-</td>
</tr>
<tr>
<td>The glass</td>
<td>Month of</td>
<td>-</td>
</tr>
<tr>
<td>Easy to use</td>
<td>Too thin</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>The plunger</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>High quality</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Flimsy</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Carafe</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Plastic</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Lid</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 12: Top 20 Most Positive (Green) and Negative (Grey) Logistic Classification Parameters for Social Aspects

Figure 13: Top 20 Most Positive (Green) and Negative (Grey) Logistic Classification Parameters for Environmental Aspects

Figure 14: Top 20 Most Positive (Green) and Negative (Grey) Logistic Classification Parameters for Economic Aspects
7 DISCUSSION AND LIMITATIONS

The words, or PerSFs, identified by this study point to useful directions in sustainable design. To reiterate, it is important to design not only for “real” sustainability, but also to include features that customers perceive as sustainable. Whether actually beneficial for the planet or not, these perceived beneficial features create cognitive alignment and trust for customers when they evaluate sustainable products for purchase [31]. The PerSFs serve as useful inputs for product experiments with customers to create sustainable products with mass-market appeal. Here, we will review the PerSFs identified and point to some associated design directions.

It is important to note that several crucial sustainability concerns for environmental aspects were identified by the LDA model, which means that they were mentioned in reviews, but they were not identified as critical to positive and negative sentiment. For example, energy and water consumption or recycling did not have a significant effect on the environmental aspects model in Fig. 13. To investigate this further, we performed a life cycle analysis (LCA) using Sustainable Minds [32] on a standard French Press and found that the biggest environmental impacts in terms of carbon footprint are associated with: (1) transportation of the product from the manufacturing site to the customer and (2) energy and water consumption while the product is being used. The manufacturing of the French Press turns out to have a relatively low impact on the environment over an estimated 5-year lifespan of the product.

![Figure 15: Life Cycle Analysis of French Press](image)

A deeper look into the carbon footprint of materials in the French Press shows that choosing plastic at times can have a lower impact on the environment than stainless steel. Table 8 shows the carbon footprint for materials of two French Presses: the first is the original design from Fig. 15, the second replaces plastic parts with stainless steel. We can see that the design with more stainless steel and less plastic has a larger carbon footprint. This is contrary to the PerSFs identified for environmental aspects and supports existing literature that customer perceptions of pro-environmental designs can differ from actual pro-environmental designs [31, 33]. This also demonstrates the gap in perceptions between designers and customers and the need for meeting both real sustainability concerns and concerns as interpreted by the customer.

Turning to the PerSFs that were found to have significant effect, we will now offer some recommendations for designers. For social aspects, in Fig. 12, the extracted PerSFs that are positive tend to relate to people, such as “for my”, “perfect for”, “entire family”. Other positive PerSFs include, quality, ease of use, and something that can be brought to work. These features relate more to the general experience of the product rather than a tangible feature.

When looking at negative PerSFs for social sustainability, however, the features become more tangible such as the “glass crack”, “metal”, and “sharp crease”. These features are potentially unsafe to the user. We also see features like “beaker” and “lid” which can be tied to “glass crack” or “sharp crease”. Other negative PerSFs include difficulty of use such as “small knife” or “impossible to”.

For environmental aspects in Fig. 13, the extracted PerSFs are tangible features for both positive and negative parameters. Some of the features with positive sentiment include “glass is strong”, “no plastic”, “stainless steel”, as well as more general features like “sturdy” or “high quality”. Looking at the features with negative sentiment, most of them are about the product breaking, which relates to durability. These include the carafe, filter, and glass breaking. The use of plastic also has negative sentiment. In some products, avoiding plastic in the external parts of the product may help it resonate with customers as sustainable.

For economic aspects in Fig. 14, the extracted PerSFs that have positive sentiment include that the product works overall and that it is worth the money. The features with negative sentiment include advertisements, feeling cheap, breaking, or if the product is not worth the money. These findings show that the number of tangible features for economic aspects is limited.

The results show potential in enabling designers to extract PerSFs from online reviews. For the case of FrenchPresses, we recommend that designers communicate social aspects of sustainability by focusing on intangible features, such as making the product gift-friendly. Moreover, designers should ensure that the tangible features are perceived as safe for the user. For environmental aspects, designers can communicate this aspect by avoiding the use of plastic and instead using “reliable” materials like metal. Designers can perform further semantic testing to identify metals and finishes that read as “reliable.” Glass can also be perceived as positive as long as it does not

<table>
<thead>
<tr>
<th>Material</th>
<th>CO₂ eq. kg/ function unit</th>
<th>Material</th>
<th>CO₂ eq. kg/ function unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass, flat, uncoated</td>
<td>0.0943</td>
<td>Glass, flat, uncoated</td>
<td>0.0943</td>
</tr>
<tr>
<td>Stainless steel, austenitic</td>
<td>0.0263</td>
<td>Stainless steel, austenitic</td>
<td>0.0414</td>
</tr>
<tr>
<td>Polypropylene, PP</td>
<td>0.0149</td>
<td>Stainless steel, austenitic</td>
<td>0.0263</td>
</tr>
<tr>
<td>Stainless steel, austenitic</td>
<td>0.00993</td>
<td>Stainless steel, austenitic</td>
<td>0.0129</td>
</tr>
<tr>
<td>Stainless steel, austenitic</td>
<td>0.00993</td>
<td>Stainless steel, austenitic</td>
<td>0.00993</td>
</tr>
<tr>
<td>Stainless steel, austenitic</td>
<td>0.00993</td>
<td>Stainless steel, austenitic</td>
<td>0.00993</td>
</tr>
<tr>
<td>Polypropylene, PP</td>
<td>0.00465</td>
<td>Stainless steel, austenitic</td>
<td>0.00993</td>
</tr>
<tr>
<td>Total</td>
<td>0.170</td>
<td>Total</td>
<td>0.205</td>
</tr>
</tbody>
</table>
impair durability of the product. For economic aspects, PerSFs revolve around how well the product works in general and if it is a good price, but we could not identify tangible product features. Therefore, from a designer’s perspective, the economic aspect of sustainability serves mainly as a price constraint for meeting the perceptions of social and environmental sustainability of a product. Using these insights, designers can communicate different aspects of sustainability to customers through the design of product features.

There are a few limitations in the study. The PerSFs extracted in this study were generated from reviews of French Presses and may not apply to other products. Testing the method on different products could help identify patterns in PerSFs between different products. The study does not investigate generalizability of the method. Moreover, there are several words that overlap between sustainable aspects. For example, the glass breaking was common to all three aspects because it is interpreted as unsafe for social aspects, waste of material for environmental aspects, and low value for money for economic aspects. Therefore, it is important to keep in mind the context that the phrases were highlighted in. Moreover, using annotators to interpret the reviews instead of directly asking the authors of the reviews adds uncertainty. Finally, the lower scores for negative sentiment in Tables 3-5 suggest that there is noise in the features associated with negative sentiment, which could explain why terms like “dishwasher” and “make tea” appear as negative features for economic aspects (Fig. 14). Annotating reviews that have a more balanced distribution between positive and negative sentiment could help address this. Moreover, we could achieve more consistent annotation patterns in Figs. 8-11 by simplifying questions in the survey and emphasizing highlighting instructions.

8 CONCLUSION

This study shows that customer perceptions of sustainable features (PerSFs) can be extracted using annotations of online reviews and machine learning for the three pillars of sustainability: environmental, social, and economic aspects. We used reviews of French Presses to demonstrate the proposed method. Reviews were annotated by MTurk respondents using a Qualtrics survey and logistic classification was used to model the annotations. In terms of social aspects, positive PerSFs for a French Press include intangible features, like giving the product as a gift to a relative, while negative PerSFs include tangible features that could be unsafe to a user, like “glass cracking”. For environmental aspects, customers associate “stainless steel” and “strong glass” in French Presses with positive PerSFs and the use of plastic or product breaking with negative PerSFs. For economic aspects, customers relate product quality and value for money as relevant features. Importantly, features typically associated with “real” environmental benefit, such as energy use and water use, were identified, but under-represented as compared to “perceived” features that are not necessarily beneficial to the environment.

The logistic classification models performed well for predicting positive sentiment in phrases containing sustainable aspects, while there is room for improvement for predicting negative sentiment. Annotating reviews that have a more balanced distribution of positive and negative reviews would help address this. Moreover, noise in the annotations can be reduced by simplifying some of the questions in the survey. For example, a single 5-point Likert scale would have been sufficient to measure the positive and negative sentiment in reviews. Emphasizing highlighting instructions could also have helped outlier behaviors shown in Fig. 8.

Moving forward, we want to investigate how the identified PerSFs can feed into design methods that validate the machine learning results, and be used by designers in their products to communicate sustainability to customers. We also want to test if the identified PerSFs can affect customer purchasing behavior and increase demand for sustainable products.

ACKNOWLEDGMENTS

We would like to thank Dr. W. Ross Morrow for writing the JavaScript code and implementing the server that provides weighted random sampling of product reviews in Qualtrics [34]. We would also like to thank Daniel Book for writing the JavaScript code that enables custom highlighting features in Qualtrics.

REFERENCES

[30] James, G., Witten, D., Haste, T., and Tibshirani, R., 2006, An Introduction to Statistical Learning with Applications in R.

