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ABSTRACT 
 This paper explores consumer consideration and design 

response in the wake of a product scandal, namely the 
Volkswagen "clean diesel" scandal. It offers the novel 
contribution of designing for consideration, rather than final 
choice, with a linked market consideration and engineering 
model. The paper demonstrates how consideration modeling 
can be used to identify design strategy that capture lost 
consideration. A simulation study investigates three response 
design strategies: a design refresh by competitors; repricing by 
VW; and a new design by VW. The model used to investigate 
these scenarios includes data from a nation-wide survey 
conducted by Autolist that collected self-reported ratings of 
both VW and diesel consideration before and after the scandal. 
It also includes an engineering model that translates 
engineering variables (such as engine bore) into vehicle design 
attributes (such as fuel economy and rollover score). The case 
study finds that a design refresh by a competitor or a new 
vehicle design by VW can capture more consideration sets than 
a VW repricing strategy alone, suggesting the importance of 
coordinating both design and economic strategies. The 
approach demonstrates the usefulness of design-for-
consideration as a strategic before/after scenario analysis tool in 
the wake of an event that triggers shifts consumers' 
considerations. 

1 INTRODUCTION 
The first successful mass-produced advance technology 

vehicles, which use powertrain systems to reduce fuel 
consumption as defined by the U.S. Department of Energy [1], 
entered the United States automotive market as hybrid-electric 
vehicles (HEVs) in 1999. Since then, ATVs have struggled to 

gain market share, despite governmental incentives such as 
offering sales tax waivers, tax credits, and access to high-
occupancy vehicle lanes [2]. HEVs comprises only 2.75% of 
the vehicles sold in the United States (US) during 2014 [3].  

Researchers postulate that the structure of consumer 
automobile purchase decisions present a barrier-to-entry for 
ATVs. Consumers use cognitive rules to create a subset of all 
vehicles that are the vehicles they would consider purchasingÑ
an approach modeled as consideration [4,5]. For a consumer to 
purchase a vehicle, they must first consider it. It is likely that 
entry into consideration sets is difficult for HEVs, with past 
research identifying that up to 50% of consumers would not 
consider a hybrid vehicle [6]. One reason for the lack of 
consideration is distrust in the novel powertrain technologies 
[7,8].!

Advanced diesel vehicles, hereafter referred to as diesel 
vehicle, are another type of vehicle that have been promoted 
environmentally sustainable alternatives to gasoline powered 
vehicles. Green Car Journal selected VWÕs 2009 Jetta TDI and 
2010 Audi A3 TDI, diesel vehicles, as The Green Car of the 
Year in 2009 and 2010, respectively [9]. Diesel vehicles 
currently make up 2.6% of the consumer automobile market, up 
from 0.6% in 2010 [10,11]. However, this increase in purchase 
of diesels may be on the precipice of a decline.  

Diesel vehicles produced by Volkswagen (VW) and Audi 
were recently exposed by a research group at West Virginia 
University [12] as violating the Clean Air Act through the use 
of a defeat device. In September, 2015, the Environmental 
Protection Agency (EPA) notified VW of the violations [13]. 
Barrett et al. have estimated that the noxious emissions from 
these vehicles could result in 59 early deaths in the United 
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States, costing approximately $450 million in social damages 
[14]. 

The discovery of the defeat device has effected perceptions 
of both VW and diesel engines. Exposure of VWÕs defeat 
device impacts entities outside of VW as a German automaker. 
There are significant implications to the United States economy 
and global automobile market. According to a recent IBIS 
World report, VW has a 10.4% global market share in 
passenger vehicles and has experienced over 100% growth in 
developing countries during 2011 [15].  

VWÕs violation of regulations will significantly impact 
vehicle consumers. Previous VW diesel consumers need to 
address deception by their vehicle manufacturer, and vehicle 
consumers currently in the market will have an altered 
perception of corporations and advanced technologies [16]. 
Further, consumers that value high fuel economy will have a 
smaller set of available technologies [13]. 

VWÕs violations will also impact other corporate entities. 
Privately-owned Volkswagen dealerships will need to 
accommodate space for unsellable diesel powered vehicles, or a 
large number of repairs, and alter business strategies to counter 
negative brand publicity [17]. At least one of the globally-
distributed Volkswagen manufacturing facilities, which hire 
local workers, has already eliminated shifts and froze hiring 
[18]. Other vehicle manufacturers which employ similar 
technologies will also be at risk of decreased sales due to 
perceived association with the VW diesel violations [19]. 
Government regulatory and testing agencies, such as the EPA, 
are reviewing practices and eliminating opportunities for 
similar emissions violations by adding costly on-road testing 
procedures [20].  

While the effects of the scandal may decrease over time, 
there is a lasting effect. In an analysis of the 2009 Toyota 
recalls, NADA found a maximum 22% decrease in the average 
price of used Toyota vehicles relative to competition during the 
incident, and that the competitive position remained 10% lower 
than before the recall two years after the recall began [21]. 

2 DESIGN IN THE WAKE OF A CONSIDERATION-
SHIFTING EVENT 

The VW scandal presents a unique opportunity for design 
researchers. A national scandal has produced a sudden and 
large change in preference for a product, as discussed below. 
While researchers can artificially induce changes in preference 
under survey contexts, for example, exposing to participants to 
negative information and measuring how preferences change, 
natural exposure offers a more realistic investigation of 
implications.  

A number of survey companies have captured this natural 
shift in preference for VW and diesel. For this paper, Autolist, a 
San Francisco-based company that specializes in data-driven 
searches of vehicle buying and selling information, offered the 
authors free access to their survey data on the scandal. This 
data is used in the model in this paper. The survey was 
conducted between December, 2015 and March, 2016. 2,494 
vehicle owners from locations across the United States 

responded. The survey asked respondents to self-report 
questions on consideration likelihood before and after the VW 
scandal. Note that, as all data was collected after the scandal, 
the before self-report answers have less accuracy than the after 
self-report answers. Overall, the Autolist survey found that 
41% of individuals polled who previously strongly considered a 
diesel vehicle would be less likely to consider one [16] and 
64% less likely to consider a VW. These survey results have 
been reflected in sales data as VW sales have decreased by 
15.3% in the United States since the EPA's announcement [22].  

In this research, we focus on the vehicle design 
implications of these consideration shifts, asking two questions: 

(1) How can US HEVs respond to the consideration lost by 
VW? 

(2) Which is the better approach for VW to regain 
consideration: repricing all vehicles or designing a new 
VW HEV?  

This paper explores the answer of these questions by 
investigating three scenarios. In the first scenario, six existing 
hybrid vehicles of US-based manufacturers refresh their 
designs to attract the consideration lost by VW. The second 
scenario optimizes the pricing strategies for the existing VW 
vehicles to maximize VW vehicle consideration, ensuring that 
if a consumer does not consider a VW, it is for a reason other 
than its pricing. The third scenario optimizes the design of a 
new VW HEV to maximize VW consideration. Note that these 
questions are explored through the use of a static model, as we 
are not interested in how preference is changing (as a dynamic 
model might articulate) but rather a comparison of "before" and 
"after" scenarios, which can be captured using static analysis. 
To coordinate consumer consideration and engineering 
performances in the design scenarios, we model both consumer 
consideration and design feasibility as provided in 
Frischknecht[23], as discussed in Section 4. 

Compared with the existing methodology in engineering 
design, the paper contributes the following:  

(1)The simulation in this paper expands current non-
compensatory modeling methodology by incorporating 
empirically-built technical engineering models which ensure 
realism of the optimal design.  

(2) The simulation scenarios analyze the impact of the 
changes in consumer sentiments to vehicle design strategies in 
new perspectives distinct from the traditional compensatory 
consumer modeling. 

The paper proceeds as follows: Section 3 reviews 
background information on consideration models and market-
based vehicle design; Section 4 presents the simulation 
methods of consideration modeling and engineering modeling; 
Section 5 formulates the strategic optimization problems in 
three scenarios. Section 6 demonstrates the use of consideration 
sets to analyze the impact of consideration shifts to diesel 
competitors; Section 7 presents the optimization results; 
Sections 8 provides discussions and conclusions. 
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3 BACKGROUND 

3.1 Non-Compensatory Decision Models 
Consumers' consideration sets can be represented by a set 

of screening rules. These rules are termed non-compensatory, 
meaning that even if a product does very well in one area, say 
price, it cannot compensate for not satisfying requirements in 
another area, say, miles per gallon (mpg).  A conjunctive rule 
is an example of a non-compensatory rule in which a product is 
only considered if the consumer finds all attributes of the 
product at an acceptable level. For example, consider a 
consumer whose consideration set, C, strictly only includes 
vehicles,!! , that achieve more than 30 mpg out of a market of 
!  vehicles (depicted in Eq.(1)). A Kia Optima (which achieves 
an EPA combined fuel economy rating of 24 mpg), will never 
enter that consumerÕs consideration set despite its others 
attributes, such as relatively low price. 

𝑪 = ! ! {! , ! ! ! ! !𝑣!"# ! !" ! (1) 
Due to the nature of the defeat device, consumers may 

have a strong emotional reaction to either VW branded vehicles 
or diesel technologies. These reactions are well-represented by  
a non-compensatory decision structure, in which, for example, 
a low price cannot compensate for a diesel engine. This study 
uses non-compensatory rules built from 874 real consumer 
preferences gathered before the disclosure of the defeat device, 
with additional alterations to match consumer surveys of VW 
and diesel perception after the disclosure, as explained in 
Section 4.2. 

Non-compensatory consideration formally refers to 
modeling the decision-making behavior of quickly screening 
alternatives based on simple heuristics to form a consideration 
set [24]. In contrast to compensatory models of decision 
processes, which assume that a good score in one attribute can 
compensate for a poor score in another attribute, non-
compensatory models do not allow such trade-offs. Non-
compensatory rules have a rich research history. In 1956, 
Simon proposed that people seek out solutions that meet some 
minimal level of acceptance [25], suggesting an aspirational 
rule. Einhorn [26] built on earlier work by Coombs [27] to 
demonstrate that conjunctive and disjunctive rules well 
represent decision processes. Payne demonstrated that 
consumers commonly use non-compensatory decision 
processes when there are many discrete options [28]. Bettman 
and Park found that consumers use non-compensatory rules 
when they are familiar with the available options and attributes 
[29]. A vehicle purchase decision satisfies both of these 
conditions.  

Recent marketing research has demonstrated that non-
compensatory decision processes are important components of 
a consumerÕs decision to purchase a product [4]. In a study of 
consumer preference for GPS units, Hauser et al. [30] found 
that consumers use a variety of non-compensatory screening 
rules, with 12% screening particularly on brand. Yee et al. 
conducted a survey of consumersÕ smart phone preferences and 
found non-compensatory behavior associated with price as well 

as functional attributes (such as whether or not the phone flips 
or has a keyboard) [31].  

Several researchers have used non-compensatory models to 
represent vehicle purchase decisions. Morrow et al. use a non-
compensatory two-stage consideration-then-choose consumer 
model in a vehicle optimization simulation [32].  

Motivated by the apparent lack of consideration of 
Chevrolet, even though its vehicles had competitive features, 
Dyzabura and Hauser created a machine learning algorithm to 
identify consumer consideration heuristics in the vehicle market 
based on a consumer survey [4]. Long and Morrow [33] found 
that non-compensatory models outperform compensatory 
models when consumersÕ vehicle decisions have non-
compensatory elements, and that satisfactorily modeling non-
compensatory behavior in a compensatory framework requires 
unreasonably large amounts of data. 

Researchers have explored a number of different types of 
non-compensatory screening rules, including: conjunctive, 
subset conjunctive, disjunctive and aspirational. In conjunctive 
screening, an individual will only consider a product if all of a 
productÕs attributes have acceptable levels. For example, a 
conjunctive rule may be ÒI want a VW with at least 35 mpg and 
a price less than $25,000Ó. This rule can be expressed 
mathematically as follows: 

!"#$%&'( !! ! !𝑖𝑓, !"# !𝑜𝑛𝑙𝑦 !" !! ! ! ! ! 𝐾! (2) 
Where: ! !  is an aspect-coded binary vector representing 

an arbitrary vehicle, j, !  is a parallel aspect-coded binary 
vector representing an individual, and K is some minimum 
required number of acceptable attributes for the product to be 
considered. In a conjunctive rule, the vehicle, ! , will be 
considered if K is equal to the number of product attributes. In 
the VW example provided immediately prior, the individual has 
three required attribute levels, thus K equals three. A 
demonstration of a conjunctive rule is shown in Figure 1.  

	
Figure 1. Example of conjunctive rule 

Subset conjunctive screening is similar to conjunctive, but 
requires that K be some number less than the total number of 
attributes be acceptable. The individual from the conjunctive 
example has three acceptable attribute levels: vehicle must be a 
VW, must achieve at least 35 mpg, and must cost less than 
$25,000. A subset rule would represent a consumer that would 
any vehicle with at least two of the previously mentioned rules 
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met. This situation would be classified as a subset conjunctive 
rule with K equals two.  

Disjunctive rules are an example of a subset conjunctive 
rule in which a product is accepted if at least one attribute is 
acceptable (K=1). ÒI either want a Volkswagen OR a vehicle 
that has better than 35 mpg fuel economy OR a vehicle that 
costs less than $25,000.Ó  

Aspirational screening rules are inspired by the concept of 
satisficing, and can be combined with any of the rule structures 
above. An alternative is considered if it exceeds some 
minimum threshold. Jedidi et al.[34] and Gilbride and Allenby 
[35] used a specified product utility level to represent that 
threshold. Although this study uses conjunctive rules, an 
example of an aspirational rule is presented below: 

! 𝒊 = ! ! ! !!"# ! ! ! !!"#$%! ! !,!"# ! ! (3) 
! ! !! ! ! !"#!! ∗ ! !"# !! ! ! !"#$% !! ! ! !"#$% !! ! ! !"#$%!! ! ! !"#$%!! ! (4) 

!"#$%&'( !! ! !!"  !"  !"#$ !!" !! ! !! ! 𝛼! ! (5) 
Where:!! ! is vehicle representing the brand, fuel economy, 

and price or an arbitrary vehicle, ! ! is a vector corresponding 
to an individualÕs part-worths, α!!!  is vehicle jÕs utility to 
individual i, and ! ! is the utility threshold. 

The result of these rules is a small set of products, in this 
case vehicles, for further consideration by each consumer. In 
the larger consider-than-choose model [36], the next step is 
modeled as a comparison of the vehicles in this small set in a 
compensatory fashion, where a high score in one attribute can 
compensate for a low score in another. These attributes may or 
may not be the same attributes that were modeled as forming 
the consideration rules. This second phase of consider-then-
choose, making the final choice for purchase, is not addressed 
in this paper. The goal of this research is to examine how 
consideration sets are modeled in different scenarios of brand 
and powertrain preferences and to design a vehicle for inclusion 
in the maximum number of consideration sets.  

3.2 Vehicle Engineering Models in Market-based 
Design 

For automobile manufacturers, the idealistic nature of 
consumer consideration must be paired with the realities of 
design decisions, as a design should be feasible in satisfying 
relationships between design variables and engineering 
performance and at the same time profitable. Software 
packages, such as AVL Cruise, use complex models to 
represent vehicle powertrains and predict performance. To take 
advantage of these packages applicability to optimal vehicle 
design, but avoid high computational cost, researchers, such as 
Frischknecht[23], have created proxy models to decrease 
optimization computation time, yet retain the modelÕs insights. 
These proxy models are expanded upon and then implemented 

in the vehicle design optimization routines conducted in this 
study, as detailed in Section 5.  

A number of researchers have used vehicle engineering 
models in the design of an optimal vehicle under market 
demand conditions. Michalek et. al [37] used engineering 
models (including fuel economy and acceleration time) to 
observe alterations to an optimally designed vehicle in a variety 
of regulatory policies. Frischknecht and Papalambros [38] 
explore environmentally-friendly vehicle designs by 
investigating tradeoffs between firm objectives (i.e. profit) and 
negative public externalities (i.e. greenhouse gas emissions). 

 He and Chen [39] use design variables to derive 
Òconsumer-desiredÓ HEV attributes in a compensatory market 
model. Their research suggests that optimal product designs 
change depending on the situation in which the HEV is used. 
Karabasoglu and Michalek [40] further investigate vehicle use 
heterogeneity with a plug-in HEV powertrain model and found 
that designs that are specifically targeted towards particular 
user groups can have much lower environmental impact. Kim 
et al. [41] use the design of a vehicle suspension, paired with 
purchase data from real consumers, to demonstrate an 
algorithm that explores disconnected design spaces, a problem 
frequently encountered in optimal vehicle design when 
populations exhibit non-compensatory disjunctions of 
conjunctive rules.  

Vehicle headroom (with dimensions defined by Society of 
Automotive Engineers (SAE)) was found to affect human 
perception of vehicle safety in an optimal experimental design 
study by Hoyle et al. [42].  Ferguson et al. [43] use early-stage 
vehicle geometry design evaluation to demonstrate a method of 
applying a genetic algorithm with fewer system evaluations in a 
two-step evaluation method. Wang et al. [44] demonstrate an 
agent based method in which agents (manufacturers) compete 
and learn to produce better products by optimizing product 
design as well as price.  

All of these works above that designed for purchase did so 
under the assumption of consumers having compensatory 
preferences, and not non-compensatory consideration, as is 
used in this paper. This is an important distinction, as [32] notes 
in a simple vehicle-design test case that ignoring consideration 
can lead to vehicle designs that are sub-optimal and do not 
maximize profit. Note that it was not studied whether or not 
any of the works mentioned above suffered from this problem. 

4 SIMULATION FORMULATION 
This section gives details of the simulation and analysis 

method using the engineering model and the consideration 
model.
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Figure 2. High level flow chart of simulation

4.1 Vehicle Market Representation 
The 2014 WardsAuto database [45] provides the 

descriptive information for the available vehicles within our 
model. The market includes V vehicles. Vehicles are included if 
they are either new introductions as of 2014 or had 2013 sales 
greater than 10,000 units, as reported in AutoNews [46]. The 
184 vehicles (V=184) that pass the threshold represent 18 
manufacturers. Each vehicle is coded using eight attributes 
inspired by Dzyabura and Hauser [4]. Table 1 presents these 
attributes and their associated discretized levels. Alterations to 
the attributes used by Dzyabura and Hauser include: removal of 
brands that were defunct in 2013, the addition of a quality 
rating of 2, and the addition of diesel as a powertrain option. 
Rollover star scores were collected from the National Highway 
Transportation and Safety Administration (NHTSA), and the 
quality scores were collected from J.D. Power[47]. The EPAÕs 
fuel economy website provided the city fuel economy ratings 
[48].    

Each vehicle is represented as a binary vector of length 53, 
corresponding to the 53 different attribute levels. The total 
vehicle market is represented as ! !

! , where a is the index of a 
particular vehicle. Within that vehicleÕs vector, a 1 represents 
that the vehicle has that particular attribute level, and a 0 
represents that the vehicle does not. To illustrate, a vehicle,! !
! ! ! ! ! ! ! , that was only represented using number of cylinders 
and rollover score, the binary vector, ! 𝒂! would be: 
! ! ! {! !!"#$%&'() ! ! !𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑠! ! !!"#$%&'() ! !!!

! !𝑠𝑡𝑎𝑟𝑠! ! !!"#$! ! ! !!"#$! ! !
(6) 

If the Volkswagen Jetta (a four cylinder vehicle that scored 
four stars on the federal rollover test) was represented in this 
form, 𝒗! ! it would be embodied as the following vector: 

! 𝑱 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! (7) 

Table 1. Vehicle attributes and levels 
Attribute  Levels 
Class Sports car, Hatchback, Compact Sedan, 

Standard Sedan, Crossover, Small SUV, 
Full-size SUV, Pickup Truck, Minivan 

Brand BMW, Buick, Cadillac, Chevrolet, 
Chrysler, Dodge, Ford, Honda, Hyundai, 
Jeep, Kia, Lexus, Lincoln, Mazda, 
Nissan, Subaru, Toyota, Volkswagen 

Manufacturers 
Suggested Retail 
Price 

$12K, $17K, $22K, $27K, $32K, $37K, 
$45K 

Cylinders 4,6,8 
Powertrain Traditional Hybrid, Gasoline, Diesel 
Fuel Economy 
(mpg) 

15, 20, 25, 30, 35 

Rollover Score 3 stars, 4 stars, 5 stars 
Quality 2, 3, 4, 5 

4.2 Consideration Rules and Shifts in Consideration 
The consumer population consists of 874 individuals that 

use conjunctive rules drawn from the vehicle survey of 
Dyzabura and Hauser [4]. The conjunctive rules screen on 8 
attributes, in total 53 attribute levels as described in Table 1). 
The rule of an individual i is coded as a binary vector of length 
53 ! !!! with 1 indicating the corresponding attribute level 
acceptable and 0 indicating unacceptable. The individual will 
consider a vehicle ! !  if and only if 

! 𝒋 ! ! !
! ! ! ! (8) 

That is, all eight attributes must be acceptable to be considered. 
The rest of this paper refers to this population as the Òbase 
populationÓ to represent that the Dyzabura and Hauser 
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consideration sets were modeled well before the VW scandal 
occurred. Within the base population, screening rules on VW 
brand and diesel powertrain come from the Autolist survey, 
which is summarized in Table 2. For continuity between 
before/ after scandal consideration model, it was necessary to 
use VW consideration from the Autolist survey. Also, as [4] did 
not ask about diesel powertrain consideration, was necessary to 
extract this from the Autolist survey, as described below. 
Limitations of this combined approach are discussed in Section 
8. 

Table 2 summarizes the consideration of VW brand and 
diesel powertrain as the percentage of population who use one 
of the four screening rules ! ! !" ! ! !"#$#%! ! ! ! ! ! ! ! ! ! !
! !! ! ! ! !! ! ! , with 1 representing considered and 0 

representing not. Table 3 summarizes the transition probability 
of the individual transit from one of the four screening rules to 
the other. For example, the probability in row Ò(0,1)Ó and 
columnÓ(0,0)Ó indicates that the chance that an individual who 
considers VW but not diesel in the base population transitions 
to reject both is 0.71. The transition probabilities are based on 
the statistics of the Autolist survey in which respondents stated 
their consideration of VW and diesel vehicles before and after 
the scandal. The original Autolist survey used a rating scale of 
1 to 5 where 5 = Òdefinitely considerÓ. In this simulation, we 
take the rating of Ò5Ó to mean considered. This leads to a 
prediction of 21% of individuals rejecting VW, which is close 
to the 14% reported in the Dzyabura & HauserÕs survey [4]. 
Taking any more than the "5" rating to mean consider (such as 
"4") would have only widened the gap between these 
percentages.         

The consideration shifts modeled in the simulation have 
not accounted for changes in preference over time. Modeling  
consideration dynamics require dif ferent survey tools and 
tracking methods, which are out of the scope of the Autolist 
survey instrument, and not necessary for the "snapshot" 
modeling approach taken here. 

Table 2. The consideration of VW brand and diesel powertrain 
in the base population 

"#$%%&'&(! $)*%!
! ! !" ! ! !"#$#%! !

+,-,. ! +,-/. ! +/-,. ! +/-/. !

0!12!34%!541*%!
616)*73'1&!

8,9:0 ! ;9<0! /=9>0! 89?0!

Table 3. The transition probabilities of VW brand and diesel 
powertrain screening rules  

"#$%%&'&(!$)*%!
! ! !" ! ! !"#$#%! !

! @*3%$%A!616)*73'1&!
+,-,. ! +,-/. ! +/-,. ! +/-/. !

B
as

e 
po

pu
la

tio
n +,-,. ! ,9>8! ,9,/ ! ,9,: ! , !

+,-/. ! ,9?, ! ,9<,! ,9,? ! ,9,B!
+/-,. ! ,98/ ! , ! ,9:; ! ,9,/ !
+/-/. ! ,9==! ,9/>! ,9,=! ,9?<!

4.3 Engineering Model 
In this paper, the design scenarios described in Section 5 

focus on the new design or redesign of an HEV, thus a design 

feasibility model for an HEV is created. The simulation 
specifies engineering variables of a full hybrid vehicle, rather 
than vehicle attributes directly, to ensure the designed vehicles 
are realistic. Full hybrid vehicles have excellent emissions 
ratings; the full hybrid vehicles in this studyÕs marketplace 
attained either Bin 2 or Bin 3 classification in the EPAÕs Tier 2 
rating platform [49Ð51] and occupy an engineering variable 
space that encapsulates the engineering design space of this 
optimization. The diesel powered vehicles offered by 
Volkswagen attained a Bin 5 rating in Tier 2 [50]. The 
constraint that the designed hybrid vehicle must perform better 
than the diesel vehicles it is replacing will be inactive. 

The engineering variables come from an engineering 
model based on the dissertation of Frischknecht [23] and other 
information described below. Frischknecht provides the basis 
of the fuel economy, roll over score, and vehicle cost models. 
Following Frischknecht, the performance of a full hybrid 
vehicle with a nickel-metal hydride battery is predicted by 
specifying eight engineering variables: the engine bore, ! !"#$ , 
bore-to-stroke ratio, ! !"# , final drive ratio, ! !" , vehicle length, 
! ! , vehicle width, ! ! , vehicle height, ! ! , vehicle wheelbase, 
! !, and peak battery power, ! !"#$ .  

Figure 3 demonstrates how the eight attributes are linked to 
the proceeding engineering models. Brand, powertrain, quality, 
and cylinders (denoted with white boxes) are given assumed 
values. Class, price, fuel economy, and rollover score are 
determined using the engineering variables contained in the text 
box.  

 
Figure 3. Attributes and engineering models 

 
Figure 4. Vehicle mpg model performance 

FrischknechtÕs models include a city fuel economy model 
of hybrid vehicles that translated AVL Cruise simulations into 
explicit expressions. This equation for city fuel economy, z, is 
proportional to the linear sum of the following terms: 
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! !" ! ! !" ! ! ! ! ! !"#$%& ! ! ! ! ! ! ! ! !"# ! ! !"
! ! ! !

! ! !! !
! ! ! !

! ! ! !"#
! ! 

! !"# 𝑥!" ! ! !" ! ! ! ! !" ! ! ! ! ! ! ! ! ! ! !"# !! ! !"#$%& ! !"# ! . 
The city fuel economy ratings are scaled by a multiplier of 

1.254 to account for the improvement in technology since 
Frischknecht created the models in 2008. Imposing a 1.254 
multiplier allowed the real fuel economy of all ten full HEV 
vehicles in the synthetic marketplace to remain within 7.5% of 
the model predicted fuel economy. Error! Reference source 
not found., previous page,  demonstrates the mpg model 
results as applied to these vehicles. 

Frischknecht also proposes a parametric method of Frischknecht also proposes a parametric method of 
determining the static stability factor, y, (see Eq. (9)) based on 
mass distribution assumptions, with input from industry 
experts. The specifications of the third generation Toyota Prius 
informed parameter values (vehicle foot room, wheel diameter, 
etc.). The vehicleÕs vertical center of gravity, n, was determined 
by summing the products of vehicle components weights and 
vertical height off the pavement and dividing by the total mass, 
as demonstrated in Eq. (10) (where ! !  stands for vertical 
height of component x, and ! !  stands for mass of component 
x). Components considered include: engine (! ! , ! ! ),  gas tank 
(! ! , ! ! ),  passengers (! ! , ! ! ),  front and rear axle (! ! , ! ! ),  
cargo (! ! , ! ! ),  suspension (! ! , ! ! ),  transmission (! ! , 
! ! ),  exhaust (! ! , ! ! ),  bumpers (! ! , ! ! ),  body (! ! , ! ! ), 
traction battery (! !" , ! !" ). 

! !
!"

!
 (9) 

! !
! ! !

!"
! ! ! ! ! !

! ! ! !!"
! ! !

! (10) 

FrischknechtÕs original model was designed for standard 
ignition vehicles and did not account for hybrid vehicle electric 
architecture. A traction battery weight term was added by 
assuming a battery weight, ! !" , of 29.26 kg (comparable to 
the Prius batteryÕs 28 1.045 kg modules) [52]. The battery is 
vertically located at the top of the wheel (! !"  = 431 mm). 

The static stability factor is subsequently used to calculate 
the NHTSA rollover stars, s: 
! ! ! ! !"# !!" ! ! ! !"# !!! ! ! ! !"## !! ! ! !

! !""! !!" ! ! !"# !!! !
(11) 

The GA in this paper applies FrischknechtÕs empirical unit 
manufacturing cost model, which accounts for the increased 
cost of the hybrid architecture by including battery parameters 
(including peak power output), the controller, and inverter, 
cables, and brackets.  

Cumulative vehicle cost is the sum of FrischnechtÕs 
production cost and additional corporate overhead and 
distribution costs amounting to 45.5% of the vehicle 
manufacturing cost, in accordance with a study on alternative 
hybrid vehicle production costs by Vyas et al.[53].  

The engineering models link vehicle class to four vehicle 
dimensions (length, wheelbase, height, width) by training a 
decision tree to the vehicles in this experimentÕs market. 
WardsAutoÕs database provided the vehicle classes. 
Dimensions were quantified according to SAE standards [54] 
and sourced from the respective manufacturerÕs website. Figure 

4 presents the resulting decision tree, which had a 
misclassification rate of 10.7% among the hatchbacks, compact 
sedans, standard sedans, small SUVs, large SUVs, pickup 
trucks, and minivans. Sports cars were not included in this tree 
due to their characterization being reflective of engine 
performance, which was not included in this model. Crossovers 
were omitted due to the extremely small training size in the 
2014 market explored in this study. 

Figure 5. Vehicle class classification tree 

5 RESPONSE DESIGN STRATEGIES 
This section mathematically describes the three strategic 

scenarios investigated in the design optimization results 
presented in Section 7. These scenarios were chosen for 
inclusion regarding a number of realistic, strategically-
advantageous possibilities. They illustrate interesting design 
opportunities for US makers, and also examine whether simply 
repricing VWs, as an economic- or marketing-only model 
might suggest, is an effective strategy vs. a design effort. 

5.1 Scenario I: US HEV Manufacturers Design to 
Capture VW's Lost Consideration 

Scenario I strategy of US HEVs: This scenario refreshes 
the design of six existing HEVs of three US brands Ð 
Chevrolet, Ford and Lincoln, while VW removes their diesels 
from the market. Suppose each of these refreshed HEVs retain 
their original body types but change prices and other design 
variables such as engine bore, bore-to-stroke ratio, final drive 
ratio, and battery peak power. The objective of these US HEVs 
is to attract the consideration sets lost by VW. Specifically, the 
optimization problem solved for each hybrid vehicle is: 

!"#$!$%&!! ! ! !! ! ! ! ! ! ! !

!

! ! !

! ! !"# ! ! ! ! !! ! ! ! ! ! ! !
! ! !!"#$ ! !"#$%

!

!

!

! ! ! ! !"# ! ! ! ! !! ! ! ! ! ! !

! ! !!"#$ ! !"#$%

! !

!

! !

! ! ! ! ! ! ! ! ! ! ! !

(12) 

! ! !!!!! ! ! ! ! ! ! !  
and 

(13) 
 

! ! ! ! !" ! !" !!"# ! ! !"##"$ !!"# ! ! !"#$ !!"# ! ! !""#$" !!"# ! (14) 
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The Indicator function ! ! !! !  takes value 1 if the 
conjunctive screening ! ! ! ! !

! ! !  is satisfied, and 0 
otherwise, with ! ! ! denoting the screening of without 
consideration changes (i.e. the base case) and ! !  denoting the 
rule with consideration changes (i.e. the altered case). Thus, the 
min{.} operator counts the individuals who consider at least 
one VW vehicle. The objective function counts the individuals 
who lost consideration during consideration changes and 
consider the refreshed hybrid. The design variables vector 
! ! ! ! ! !"#$ ! ! !"# ! ! !" ! ! !"#$%& !  represents, respectively, 
engine bore, bore-to-stroke ratio, final drive ratio, and peak 
battery power. The mapping from design variable to consumer 
observed attribute vector ! ! ! ! !  is provided in Fig.3. Eqn.(13) 
constrains the manufacturing cost of the vehicle c(.) to be lower 
than the price. Eqn.(14) enforces the refreshed design to have a 
superior emission rating than those of the VW Jetta TDI, Passat 
TDI, Golf TDI, and the Beetle TDI.  

 

5.2 Scenario II: VW Repricing to Capture 
Consideration 

In a compensatory framework, repricing may entice 
consumers to buy a VW. This strategy may not necessarily 
produce the desired results in a non-compensatory framework. 
The optimal pricing strategy is examined here for a situation 
where the prices of all non-diesel VW vehicles are set to 
maximize VW consideration set inclusion. In other words, the 
price of all VWs is set to a value considered by all 
consumersÑ the most optimistic case possible. Therefore, in 
this scenario, if a consumer does not consider a VW, it is 
because of an attribute other than price. To create this scenario, 
the following pricing optimization problem is solved: 

 

!"# !"# ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! !
! ! !

! ! !"#$ ! !"#$%

!

!

! ! !

!

! ! ! ! ! ! !! ! !! "#$!%&&!! ! !"#$ ! !"#$%!

(15) 

! ! !!!!! ! ! !
! ! ! ! !  (16) 

 
Indicator function ! ! !! !  takes value 1 if the conjunctive 
screening ! ! ! ! !

! ! !  is satisfied, and 0 otherwise. Variable 
! !  is the price of each existing VW vehicle that does not 
violate the emission standards, and ! !

!  is the fixed design 
features. The attributes observed in the consumer model are 
mapped from the price and fixed feature via ! ! ! ! ! !

! ! Same 
as Scenario I, the min{.} operator counts the individuals who 
consider at least one VW vehicle. The fixed design features 
vector !! !

! ! ! ! !"#$
! ! ! !"#

! ! ! !"
! ! ! !"#$%&

! ! ! !"
! ! ! !

! ! ! !
! ! ! !

! !  
includes, respectively, engine bore, bore-to-stroke ratio, final 
drive ratio, peak battery power, vehicle wheelbase, width, 
height, length. 

 

5.3 Scenario III: VW Designs to Recapture Lost 
Consideration  

The scenario investigates the strategy of introducing a new 
VW HEV to maximize the number of consideration sets that 
contain at least one VW vehicle, assuming the removal from 
the market of all VW diesels, as expressed in Eq. (15)-(17).  

!"# !"# ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! !
! ! !"#$ ! !"#$%

!

!

! ! !

!

! ! ! ! ! ! ! ! ! ! ! !

(17) 

! ! !!!!! ! ! ! ! ! ! !  
and 

(18) 
 

! ! ! ! !" ! !" !!"# ! ! !"##"$ !!"# ! ! !"#$ !!"# ! ! !""#$" !!"# ! (19) 
 

  
Indicator function ! ! !! !  takes value 1 if the conjunctive 

screening ! ! ! ! !
! ! !  is satisfied, and 0 otherwise. Same as 

Scenario I, the min{.} operator counts the individuals who 
consider at least one VW vehicle. The design variables vector 
! ! ! ! ! !"#$ ! ! !"# ! ! !" ! ! !"#$%& ! ! !" ! ! ! ! ! ! ! ! ! !  includes, 
respectively, engine bore, bore-to-stroke ratio, final drive ratio, 
peak battery power, vehicle wheelbase, width, height, length 
and price.  

6 VALIDATION OF CONSIDERATION MODEL WITH 
REAL-WORLD DATA 

Before discussing the results of the design optimizations, 
this section provides some partial validation to the model by 
comparing the model's predicted considerations to actual 
industry data. By simulating the 874 consumer consideration 
sets, we investigate two potential impacts to the diesel 
competitors: (1) vehicles that share the same consideration sets 
with the VW diesels may gain more attention due to the 
removal of VW diesels from the market; and (2) the changed in 
consideration for VW and diesel powertrain in the model is 
event in real-world data. Table 5 illustrates the impacts to 
consideration set inclusion to three non-VW diesels in the 
existing market. Table 6 summarizes the observed lead volume 
(the request for vehicle details to dealers submitted by 
consumers) provided by Autolist, and the monthly sales 
provided by Autonews.com; the percentages calculate the 
fraction of lead volume (or sales) of a specific vehicle model in 
the total lead volume (or sales) of the 184 vehicles studied in 
this simulation. 

For the BMW 328d, the number of consideration sets 
increases from four to five before/after because there is still a 
chance for individuals change from reject diesel to consider 
diesel (See transition probabilities in Table 3). Also, two out of 
its five consideration sets in the "after" case include the 
removed VW diesels. Thus, the BMW 328d would benefit from 
both the change of diesel consideration and the removal of VW 
diesel. The increment of lead volume and the sales in the real-
world data are consistent with this prediction from the model.  
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For the BMW 535d, the decrease of the consideration of 
diesel powertrain causes the consideration set participation of 
the 535d to decrease from six to five. However, the removal of 
the VW diesels from two of its five consideration sets may 
counteract the decrease of consideration sets. Both the lead 
volume and sales data show a decrease.  

The Chevrolet Cruze loses five consideration sets due to 
the change of diesel consideration. This loss may be 
counteracted by the removal of VW diesels from six of its 
consideration sets. Moreover, there are also non-diesel VW 
vehicles that are taken away from three of its consideration sets 
due to the change of VW brand consideration. In the real-world 
data, the lead volume remains at the same level and the sales 
shows an increase of 0.15% share, although such increase is 
still smaller compared to the increment of the same period of 
the previous year.   

Comparing the statistics of the consideration model (Table 
5) with the real-world lead volume and sales data (Table 6), the 
model has potential to provide clues in explaining the real 
world changes. Specifically, in the case of the BMW 328d, the 
simulation predicts consideration will be larger after the 
scandal and the real world sales data and lead volume validate 
this trend. Yet, the comparison also exposes the challenge of 
completely matching the model predictions with the lead 
volume and sales. Particularly, the model is unclear about 
whether or not the BMW 535d or Chevrolet Cruze TDI will 
benefit from the scandal. One possibility is that the 
consequence of the lost of consideration sets cannot be 
counteracted by gaining more attention in the remaining 
consideration sets. As consideration sets do not model the final 
purchase choice, the connection between real world sales and 
the model may not be direct. 

Table 4. The Consideration set statistics of three non-VW 
diesel vehicles  

C%4'#*%!
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Table 5. Lead volume and sales change from September to 
October, 2015 
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7 DESIGN OPTIMIZATION RESULTS 
Using the problem formulations in Section 5, a genetic 

algorithm (GA) was used to search for the optimal vehicle. GAs 
use biological concepts such as natural selection to produce 
optimal designs over successive generations. Their ability to 
handle discontinuities allow them to handle non-compensatory 
heuristics well [32]. The genetic algorithm designs a vehicle by 
specifying nine alleles that correspond to the eight engineering 
variables presented in FrischknechtÕs work and vehicle price, as 
shown in Fig. 2. Each allele has 15 levels (excluding price) 
which are represented in Table 6. Additionally, the vehicle 
price is constrained to be greater than the sum of the 
manufacturing [23] and overhead costs [53].  

The algorithm applies 40 generations of a GA population, 
each with 50 potential designs. In each generation, the GA 
applies two-parent selection and one point crossover with a 
65% replacement rate. The parameters were specified after a 
systematic evaluation demonstrated that the genetic algorithm 
would consistently design similar vehicles for a specific 
population from a variety of initial allele sets. The number of 
generations required was determined by locating the number of 
generations at which solutionsÕ objective function value 
plateaued. 

Table 6. Genetic algorithm allele representation 

"##$#$! %&'(!)*#+$!
%*,(!
)*#+$!

-+.(!/0!
1$2$#3!

S&('&%!M1$%! ;89<!JJ ! >:!JJ ! /< !
M1$%R31R"3$1T%!I73'1! ,9>! /9/; ! /< !
U'&7*!P$'K%!I73'1! =9:<! <! /< !
M733%$V!W%7T!W15%$! =,!T5! B<!T5! /< !
H4%%*!M7F%! ::,,!JJ ! =:,,!JJ ! /< !
H'A34! /B<,!JJ ! :,,,!JJ ! /< !
X%'(43! /?,,!JJ! ! /;,,!JJ ! /< !
L%&(34! ?=,,!JJ ! </,,! JJ ! /< !
W$'#%! Y/:-,,, ! Y?<-,,, ! 8!

We ran the GA 100 times with different initial populations. 
The GA optimization uses the GALib C++ library created by 
Wall [55]. Computation was executed on a Macbook Pro with a 
2.4 GHz processor and 8 GB of RAM.  

7.1 Results from Scenario I: US HEV Manufacturers 
Design to Capture VW's Lost Consideration 

As described in Section 5.1, we created an optimization 
scenario to investigate which US-manufactured HEVs could be 
refreshed to capture VW's lost consideration. Table 8 compares 
the current design and the refreshed solutions of six HEVs. For 
each HEV, the row labeled ÒcurrentÓ is the vehicle design and 
pricing in the existing market "before"; the ÒmeanÓ, ÒminÓ and 
ÒmaxÓ rows are respectively the mean, minimum and maximum 
values across the optimal solutions for the "after" the scandal 
market, observed in 10 simulation runs. Except for the 
Chevrolet Impala LT Eco, the optimal strategies suggest the 
automakers can pick up the consideration sets by lowering the 
current prices. The results suggest slightly sacrificing the mpg 
levels and battery power to accommodate the lowered prices 
with lower costs. Interestingly, for Chevrolet Impala LT Eco, 
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the result points to both higher battery power and higher mpg, 
in addition to the lower price. The simulation identifies Ford 
Fusion SE Energi Hybrid as the most strategically-positioned to 
refresh its design and capture the consideration VW lost, 
because the optimal refreshed solution is very similar to its 
current design.  

The Ford Fusion series attracted 48.6% of the VW lost 
considerations on average, followed by Ford C-Max series with 
44.3%, and the Chevrolet Impala LT Eco with 37.4%. The 
mean values are shown in Figure 6, where the error bars 
represent the minimum and maximum observations over 10 
simulation runs. The refreshed MKZ hybrid of Lincoln has 
significantly lower potential to capture the considerationsÑ it is 
only able to capture 2.3% on average. The Ford Fusion SE 
Energi is in the best position to pick up the lost consideration of 
VW among these six American HEVs, given it is most capable 
for attracting considerations without significantly changing its 
current pricing and design strategy. 

 
Figure 6. Refreshed American HEVs capture consideration 
sets lost by VW. 

7.2 Scenarios II and III: Should VW Reprice or Design 
a New Vehicle? 

As explained in Section 5, here we investigate if VW 
should design a new HEV to recapture consideration or reprice 
all existing non-diesel vehicles. 

Both strategies, repricing and introducing a new design, 
increase consideration. On average, introducing a new HEV 
gained more consideration sets than re-pricing. Figure 7 
presents the mean results of the consideration sets inclusion 
under different strategies. The error bars represent maximum 
and minimum observed over 10 simulation runs. The optimal 
vehicle to increase consideration sets is a small SUV with a fuel 
economy of above 35 mpg, a roll over score of 3, and a price of 
$22,000. Table 9 presents the levels of optimal vehiclesÕ 
engineering variables found over the simulation runs.  

Table 7. Optimal refreshing strategy of Six American HEVs  
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Figure 7. Impacts of VW strategies on VW considerations.  

8 CONCLUSION 
This study joins a conjunctive consideration survey-based 

model, self-report consideration data on before and after a 
product scandal event, real world market data and an 
engineering feasibility model to investigate design strategies.  
It first provided partial, trend-level-only, validation of the 
consideration model using industry sales data. Then, with three 
simulation scenarios, the study suggests (1) that US automakers 
may capture VW's lost consideration by refreshing an existing 
HEV and (2) that VW will benefit more from designing a new 
HEV rather than repricing all existing vehicles.  

Modeling consideration provides new insight for strategic 
design and pricing decisions. Rather than assuming universal 
impacts to the vehicle market, as in the traditional 
compensatory modeling mind-set, modeling consideration sets 
identifies targeted opportunities for gaining competitive 
advantage.  

HEVs of US brands such as Ford and Chevrolet are in a 
good position to gain the consideration lost by VW. These 
manufacturers have distinct advantages when they refresh the 
existing hybrid vehicles: (1) they are not directly affected by 
the scandal; (2) they are already acceptable brands in larger 
fraction of the consumer population; and (3) refreshing an 
existing HEV saves overhead costs of designing from scratch, 
thus a lower price point may be economically viable. 

Repricing is a strategy derived from the concept of 
compensatory preference in which consumers are assumed to 
trade-off between price and the brand/powertrain perception. 
However in the view of consideration modeling, the power of 
re-pricing is limited. By maximizing consideration set 
inclusion, the simulation points out another strategic option, 
introducing a new VW HEV. In the simulation runs, designing 

a new VW HEV gained more consideration sets than repricing 
every VW to be considered by every consumer, which is the 
most optimistic (and also likely unprofitable) repricing scenario 
possible. This finding demonstrates that a company should 
carefully weigh the advantages of economic strategy, such as 
pricing, with design strategy, such as introducing a new 
product. 

There are several limiting assumptions to this study. This 
study assumes that consumers only evaluate vehicles on eight 
attributes (see Fig. 3) at prescribed, discretized levels, which 
can be determined by nine variables (see Table 6). The 
evaluated design attributes are largely functional; quantifying 
consumer consideration of vehicle style elements is out of the 
scope of this paper, but will influence consideration. 

Additionally, this study combines data from a variety of 
sources with different levels of internal accuracy. If the results 
of this study were to be taken forward by a manufacturer, a 
much more robust approach would be to include uncertainty in 
the model that captures these discrepancies. Further, the 
surveys on consumer perceptions and preferences come from 
different snapshots of time. As much as possible, it is a much 
better approach to capture all of this information in one survey, 
but this is beyond the budget and scope of this project.  

The study has not considered time effects, such as how 
consideration changes overtime or game theoretic competitive 
design decisions. Instead it uses a before/after scandal scenario 
analysis approach. Including time effects requires new survey 
methods to track and observe the dynamics of the consideration 
rules; and a dynamic model of competitors' design and pricing 
decisions. While there may be more to be learned from a model 
with time effects, it is debatable whether or not the associated 
increases in computational time and uncertainties/errors within 
the model parameters would be balanced by additional insights. 
As this study suggests that consideration modeling provides 
unique insights when designing for large shifts in consumer 
preference, further research is warranted.  
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